bart
PRO
- Сообщения
- 44.554
- Реакции
- 22.519
Прикладное машинное обучение на Python
Applied Machine Learning in Python
coursera
Этот курс познакомит учащегося с прикладным машинным обучением, сосредоточив внимание больше на методах и методах, чем на статистике, лежащей в основе этих методов. Курс начнется с обсуждения того, чем машинное обучение отличается от описательной статистики, и представит набор инструментов для обучения scikit.
Будет обсуждаться вопрос размерности данных, и будет решаться задача кластеризации данных, а также оценка этих кластеров. Будут описаны контролируемые подходы к созданию прогностических моделей, и учащиеся смогут применять методы прогностического моделирования scikit Learn, одновременно понимая проблемы процесса, связанные с обобщаемостью данных (например, перекрестная проверка, переобучение). Курс завершится рассмотрением более продвинутых методов, таких как построение ансамблей, и практических ограничений прогностических моделей. К концу этого курса студенты смогут определить разницу между контролируемым (классификация) и неконтролируемым (кластеризация) методами, определить, какой метод им нужно применить для конкретного набора данных и потребности, разработать функции для удовлетворения этой потребности и написать код Python для проведения анализа.
Этот курс следует пройти после введения в науку о данных в Python и прикладного построения графиков, диаграмм и представления данных в Python и перед прикладным анализом текста в Python и прикладным социальным анализом в Python.
Материал на английском языке
Продажник:
Скачать:
Applied Machine Learning in Python
coursera
Этот курс познакомит учащегося с прикладным машинным обучением, сосредоточив внимание больше на методах и методах, чем на статистике, лежащей в основе этих методов. Курс начнется с обсуждения того, чем машинное обучение отличается от описательной статистики, и представит набор инструментов для обучения scikit.
Будет обсуждаться вопрос размерности данных, и будет решаться задача кластеризации данных, а также оценка этих кластеров. Будут описаны контролируемые подходы к созданию прогностических моделей, и учащиеся смогут применять методы прогностического моделирования scikit Learn, одновременно понимая проблемы процесса, связанные с обобщаемостью данных (например, перекрестная проверка, переобучение). Курс завершится рассмотрением более продвинутых методов, таких как построение ансамблей, и практических ограничений прогностических моделей. К концу этого курса студенты смогут определить разницу между контролируемым (классификация) и неконтролируемым (кластеризация) методами, определить, какой метод им нужно применить для конкретного набора данных и потребности, разработать функции для удовлетворения этой потребности и написать код Python для проведения анализа.
Этот курс следует пройти после введения в науку о данных в Python и прикладного построения графиков, диаграмм и представления данных в Python и перед прикладным анализом текста в Python и прикладным социальным анализом в Python.
Материал на английском языке
Продажник:
Для просмотра вы должны войти или зарегистрироваться.
Скачать:
Скрытое содержимое могут видеть только пользователь группы: PRO
Качать без ограничений Купить доступ к 1 теме
Качать без ограничений Купить доступ к 1 теме
Скрытое содержимое для пользователей: Ferr